1)∵数列{an}是公差为d的等差数列,d≠0且a1=0
∴an=a1+(n-1)d=(n-1)d
∵bn=2^an (n∈N*)
∴bn=2^an=2^((n-1)d) (n∈N*)
∵Sn是{bn}的前n 项和
∴Sn=1+2^d+2^(2d)+.+2^((n-1)d)
=2^(nd)-1 (由等比数列求和公式得)
故Tn=Sn/bn
=(2^(nd)-1)/(2^((n-1)d))
=2-1/(2^((n-1)d)) (n∈N*);
2)lim(n->∞)Tn=lim(n->∞)[2-1/(2^((n-1)d))]
=2 (∵d>0时,lim(n->∞)[1/(2^((n-1)d))]=0).