已知x,y∈R,求证:x+y+1≥x+y+xy
2个回答
2x+2y+2≥2x+2y+2xy x+x+y+y-2x-2y+1+1-2xy≥0 (x+1)+(y+1)+(x-y)≥0 平方都≥0所以成立
相关问题
已知x,y∈R,求证:x-xy+y≥x+y-1
已知x,y∈R,求证x2-xy+y2>=x+y-1
已知x,y∈R,求证:x^2+y^2≥xy+x+y-1
已知x.y∈R,求证x2+y2+1≥x+y+xy
已知x,y∈R,满足(x²+y²+2)(x²+y²-1)-18≤0.求证:xy≤
已知x,y属于正R,且x+2y=1,求证xy=
已知X,Y属于R,求证X平方减去XY+Y平方大于等于X+Y减去1
已知x+y=1,求证:x³+3xy+y³=1
已知x>y,求证x³-y³>2x²y-2xy²
已知x>y,求证:x³-y³>2x²y-2xy²