已知如图,BC为半圆O的直径,AD⊥BC,垂足为D,过点B作弦BF交AD于点E,交半圆O于点F,弦AC与BF交于点H,且

1个回答

  • 证明:(1)∵AE=BE,

    ∴∠BAD=∠ABE,

    ∵BC是直径,AD⊥BC,

    ∴∠ADB=∠BAC=90°,

    ∴∠ABD+∠BAD=∠ABC+∠C=90°,

    ∴∠BAD=∠C,

    ∴∠C=∠ABF,

    AB =

    AF ;

    (2)∵∠C=∠ABF,

    Rt△ABH ∽ Rt△ACB,

    ∴AH:BH=AB:BC,即AH•BC=AB•BH,

    ∵∠EAH+∠BAD=∠AHB+∠ABH=90°,∠BAD=∠ABE,

    ∴∠EAH=∠AHB,

    ∴AE=EH=BE=

    1

    2 BH,

    ∴AH•BC=2AB•BE.