如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COB,∠1:∠2=1:4,求∠AOF的度数.

1个回答

  • 其实很容易,

    OE平分∠BOD,∠AOC和∠BOD角度一样,所以,

    ∠DOE = ∠BOE = ∠1

    ∠AOC = ∠BOD = 2∠1

    OF平分∠COB,∠AOD和∠BOC角度一样,所以,

    ∠AOD = ∠EOB = ∠2

    ∠COF = ∠BOF = 0.5∠BOC = 0.5∠2

    ∠1 :∠2 = 1 :4

    ∠1 / ∠2 = 1/4

    ∠2 = 4∠1__i

    既然COD是直线,

    ∠AOC + ∠AOD = 180°

    2∠1 + ∠2 = 180°__ii

    把 i 放入 ii,

    2∠1 + 4∠1 = 180°

    6∠1 = 180°

    ∠1 = 30°

    ∠AOF相等于,

    ∠AOF = ∠AOC + ∠EOF

    = 2∠1 + 0.5∠2

    = 2∠1 + 0.5(4∠1)

    = 2∠1 + 2∠1

    = 4∠1

    = 4(30°)

    = 120°

    结论∠AOF = 30°