设 a = log(1/2)(x)
则原不等式
2[ log(1/2)(x) ]² + 7log(1/2)(x) + 3 ≤ 0可化为:
2a² + 7a + 3 ≤ 0
∴(a + 3) (2a + 1) ≤ 0
∴ -3 ≤ a ≤ -1/2
∴-3 ≤ log(1/2)(x) ≤ -1/2
∴ 1/2 ≤ log(2)(x) ≤ 3
解以上不等式的所有方法中,“因式分解法”较为简便.
f(x) = [ log(2)(x/4) ] × [ log(2)(x/2) ]
= [ log(2)(x) - log(2)(4) ] × [ log(2)(x) - log(2)(2) ]
= [ log(2)(x) - 2 ] × [ log(2)(x) -1 ]
设 m = log(2)(x) ,
∵1/2 ≤ log(2)(x) ≤ 3 (已证)
∴ m ∈ [ 1/2,3 ]
于是问题转化为:
求函数y = f(x) = ( m - 2 ) × ( m -1 ) 的最大值和最小值.
这是典型的“闭区间上的二次函数求最值”问题.
y = f(x) = ( m - 2 ) × ( m -1 )
y = f(x) = m² - 3m + 2
y = f(x) = (m - 3/2)² - 1/4 其中m ∈ [ 1/2,3 ]
考察二次函数y = f(x) = (m - 3/2)² - 1/4
开口向上、对称轴为 m = 3/2、最小值为 -1/4、关键是定义域为m ∈ [ 1/2,3 ].
画出二次函数y = f(x) = (m - 3/2)² - 1/4 的图像,
由图知:对称轴在定义域范围之内,
故当m = 3/2 时,函数y = f(x) 取到最小值 -1/4;
当m = 3 时,函数y = f(x) 取到最大值,把m = 3 代入二次函数表达式求得该最大值为2.
设 a = log(1/2)(x)
则原不等式
2[ log(1/2)(x) ]² + 7log(1/2)(x) + 3 ≤ 0可化为:
2a² + 7a + 3 ≤ 0
∴(a + 3) (2a + 1) ≤ 0
∴ -3 ≤ a ≤ -1/2
∴-3 ≤ log(1/2)(x) ≤ -1/2
∴ 1/2 ≤ log(2)(x) ≤ 3
∴2的(1/2)次方 ≤ x ≤ 2的3次方
∴ √2 ≤ x ≤ 8
∴x ∈ [√2,8]
f(x) = [ log(2)(x/4) ] × [ log(2)(x/2) ]
= [ log(2)(x) - log(2)(4) ] × [ log(2)(x) - log(2)(2) ]
= [ log(2)(x) - 2 ] × [ log(2)(x) -1 ]
= [ log(2)(x) ]² - 3log(2)(x) + 2
= [ log(2)(x) - 3/2) ]² - 9/4 + 2
= [ log(2)(x) - 3/2]² - 1/4
∵x∈[√2,8] 而 对称轴3/2在定义域[√2,8]之内
∴当x = 3/2时,f(x)有最小值 -1/4;
当x = 8时,f(x)有最大值,
最大值为:[ log(2)(8) - 3/2 ]² - 1/4 = [ 3 - (3/2) ]² - 1/4 = 2.