解题思路:由BD是⊙O的直径,点A、C在⊙O上,
AB
=
BC
,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数.
∵
AB=
BC,∠AOB=60°,
∴∠BDC=[1/2]∠AOB=30°.
故选C.
点评:
本题考点: 圆周角定理;圆心角、弧、弦的关系.
考点点评: 此题考查了圆周角定理.此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.
解题思路:由BD是⊙O的直径,点A、C在⊙O上,
AB
=
BC
,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数.
∵
AB=
BC,∠AOB=60°,
∴∠BDC=[1/2]∠AOB=30°.
故选C.
点评:
本题考点: 圆周角定理;圆心角、弧、弦的关系.
考点点评: 此题考查了圆周角定理.此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.