设x=t^6,t>0,对原式做代换:
∫(dx/((1+x^1/3)x^1/2))
=∫1/t^3(1+t^2) d t^6
=6∫t^2/(1+t^2) dt
=6∫[1- 1/(1+t^2)]dt
=6(t-arctant)+c 根据 t=x^(1/6)回代:
=6[x^(1/6)-arctanx^(1/6)]+c
以上答案仅供参考,
设x=t^6,t>0,对原式做代换:
∫(dx/((1+x^1/3)x^1/2))
=∫1/t^3(1+t^2) d t^6
=6∫t^2/(1+t^2) dt
=6∫[1- 1/(1+t^2)]dt
=6(t-arctant)+c 根据 t=x^(1/6)回代:
=6[x^(1/6)-arctanx^(1/6)]+c
以上答案仅供参考,