先将角度往a+π/4靠拢:
sin(2a + π/2) = cos2a = n.cos(2a + π/2) = - sin2a = -m.
然后利用二倍角公式展开:
sin(2a + π/2) = 2sin(a+π/4)cos(a+π/4) = n.式(1)
cos(2a + π/2) = 2 cos²(a+π/4) - 1 = -m .式(2)
由式(2),得 2 cos²(a+π/4) = 1 - m.式(3)
式(1)÷式(3) ,即得答案 :
tan(a+π/4)= [2sin(a+π/4)cos(a+π/4)]/[2 cos²(a+π/4)]= n/(1-m)
由于 m和n 的关系确定,即 m² + n² = 1,故答案不唯一.