高一数学必修一第2章总结

2个回答

  • 高一数学必修1第一章知识点总结

    一、集合有关概念

    1. 集合的含义

    2. 集合的中元素的三个特性:

    (1) 元素的确定性,

    (2) 元素的互异性,

    (3) 元素的无序性,

    3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

    (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

    (2) 集合的表示方法:列举法与描述法.

    注意:常用数集及其记法:

    非负整数集(即自然数集) 记作:N

    正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

    1) 列举法:{a,b,c……}

    R| x-32) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.{x>2} ,{x| x-3>2}

    3) 语言描述法:例:{不是直角三角形的三角形}

    4) Venn图:

    4、集合的分类:

    (1) 有限集 含有有限个元素的集合

    (2) 无限集 含有无限个元素的集合

    (3) 空集 不含任何元素的集合 例:{x|x2=-5}

    二、集合间的基本关系

    1.“包含”关系—子集

    注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合.

    反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

    2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

    实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

    A即:① 任何一个集合是它本身的子集.A

    B那就说集合A是集合B的真子集,记作A B(或B A)B,且A②真子集:如果A

    CC ,那么 AB, B③如果 A

    B④ 如果A A 那么A=B同时 B

    3. 不含任何元素的集合叫做空集,记为Φ

    规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

    有n个元素的集合,含有2n个子集,2n-1个真子集

    三、集合的运算

    运算类型 交 集 并 集 补 集

    定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.

    由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).

    设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

    记作 ,即

    CSA=

    质 A A=A

    A Φ=Φ

    A B=B A

    A B A

    A B B

    A A=A

    A Φ=A

    A B=B A

    A B A

    A B B

    (CuA) (CuB)

    = Cu (A B)

    (CuA) (CuB)

    = Cu(A B)

    A (CuA)=U

    A (CuA)= Φ.

    例题:

    1.下列四组对象,能构成集合的是 ( )

    A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数

    2.集合{a,b,c }的真子集共有 个

    3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},则M与N的关系是 .

    4.设集合A= ,B= ,若A B,则 的取值范围是

    5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,

    两种实验都做错得有4人,则这两种实验都做对的有 人.

    6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .

    7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值

    二、函数的有关概念

    1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

    注意:

    1.定义域:能使函数式有意义的实数x的集合称为函数的定义域.

    求函数的定义域时列不等式组的主要依据是:

    (1)分式的分母不等于零;

    (2)偶次方根的被开方数不小于零;

    (3)对数式的真数必须大于零;

    (4)指数、对数式的底必须大于零且不等于1.

    (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

    (6)指数为零底不可以等于零,

    (7)实际问题中的函数的定义域还要保证实际问题有意义.

    相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

    (见课本21页相关例2)

    2.值域 : 先考虑其定义域

    (1)观察法

    (2)配方法

    (3)代换法

    3. 函数图象知识归纳

    (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .

    (2) 画法

    A、 描点法:

    B、 图象变换法

    常用变换方法有三种

    1) 平移变换

    2) 伸缩变换

    3) 对称变换

    4.区间的概念

    (1)区间的分类:开区间、闭区间、半开半闭区间

    (2)无穷区间

    (3)区间的数轴表示.

    5.映射

    一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射.记作f:A→B

    6.分段函数

    (1)在定义域的不同部分上有不同的解析表达式的函数.

    (2)各部分的自变量的取值情况.

    (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

    补充:复合函数

    如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数.

    二.函数的性质

    1.函数的单调性(局部性质)

    (1)增函数

    设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1