f(x)=sinx+cosx
=√2(√2/2*sinx+√2/2cosx)
=√2(sinxcosπ/4+cosxsinπ/4)
=√2sin(x+π/4)
所以最大值=√2
f(a)=sina+cosa=3/4
平方
sin²a+cos²a+2sinacosx=9/16
1+sin2a=9/16
sin2a=-7/16
f(x)=sinx+cosx
=√2(√2/2*sinx+√2/2cosx)
=√2(sinxcosπ/4+cosxsinπ/4)
=√2sin(x+π/4)
所以最大值=√2
f(a)=sina+cosa=3/4
平方
sin²a+cos²a+2sinacosx=9/16
1+sin2a=9/16
sin2a=-7/16