已知函数f(x)对任意实数x,y∈R,总有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.

6个回答

  • 取x=y=0,由“f(x)对任意实数x,y∈R,总有f(x+y)=f(x)+f(y)”得f(0)=f(0)+f(0),所以f(0)=0,

    再取y=-x,由“f(x)对任意实数x,y∈R,总有f(x+y)=f(x)+f(y)”得f(x)+f(-x) = f(0)=0,所以f(x)是奇函数,所以f(x2)+ f(-x1)= f〔x2+ (-x1)〕=f(x2-x1),因为“对任意实数x∈R ,x>0时,f(x)<0”,那么取x=x2-x1>0,则f(x)=f(x2-x1) f(-2),f(11-5x)> f(-2),f(x)在R上为减函数,11-5x13/5