在1与100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,令an=lg(Tn)(n

2个回答

  • (1)

    设构成等比数列{an},公比为q

    1为数列的第1项,100为数列的第n+2项.

    100/1=q^(n+1)

    q^(n+1)=100

    Tn=a1a2...a(n+2)

    =a1×(a1q)×...×[a1q^(n+1)]

    =[a1^(n+2)]×q^[1+2+...+(n+1)]

    =[1^(n+2)]×q^[(n+1)(n+2)/2]

    =[q^[(n+1)/2]]^(n+2)

    =[100^(1//2)]^(n+2)

    =10^(n+2)

    an=lg(Tn)=lg[10^(n+2)]=n+2

    数列{an}的通项公式为an=n+2.

    (2)

    bn=tan(an) × tan[a(n+1)]

    [tan(a(n+1) -t(an)]/[1+tan(an)×tan(a(n+1)]=tan[a(n+1)-an]=tan(n+1+2-n-2)=tan1

    tan(an)×tan[a(n+1)]=[tan(a(n+1)-t(an)]/tan1 -1

    Sn=b1+b2+...+bn

    =[tan(a2)-tan(a1)+tan(a3)-tan(a2)+...+tan[a(n+1)-t(an)]]/tan1 -n

    =[tan(a(n+1)) -tan(a1)]/tan1 -n

    =[tan(n+3) -tan3]/tan1 -n