作OC的反向延长线交弧APB于点E,
∵CD⊥AB
∴弧CA=弧CD
∵角COA=角BOE
∴弧CA=弧BE
∴弧AD=弧BE
∵CP是角OCD的角平分线
∴角DPC=角ECP
∴弧DP=弧EP
∴弧AD+弧DP=弧BE+弧PE
即:弧AP=弧BP
由题意可知,无论C在上半弧的什么位置,此结论都成立.
作OC的反向延长线交弧APB于点E,
∵CD⊥AB
∴弧CA=弧CD
∵角COA=角BOE
∴弧CA=弧BE
∴弧AD=弧BE
∵CP是角OCD的角平分线
∴角DPC=角ECP
∴弧DP=弧EP
∴弧AD+弧DP=弧BE+弧PE
即:弧AP=弧BP
由题意可知,无论C在上半弧的什么位置,此结论都成立.