在数列an中,已知a₁=⅔,an+1=2an/an+1,n=1,2,3.一证明数列{1/an-1

1个回答

  • a(n+1)=2an/(1+an)【取倒数】

    1/a(n+1)=(1+an)/2an

    2/a(n+1)=(1/an)+1

    [2/a(n+1)]-2=(1/an)-1

    于是[1/a(n+1)]-1=(1/2)[(1/an)-1]

    (1/a1)-1=1/2

    数列{(1/an)-1}是以1/2为首项,1/2为公比得等比数列

    (1/an)-1=(1/2)^n

    (2)

    1/an=1+(1/2)^n

    n/an=n+(n/2^n)

    sn=1/a1+2/a2+……+n/an

    =1+(1/2)+2+(2/2²)+……+n+(n/2^n)

    =(1+2+……+n)+[(1/2)+(2/2²)+(3/2³)……+(n/2^n)]

    =[n(n+1)/2]+[(1/2)+(2/2²)+(3/2³)……+(n/2^n)]

    令bn=(1/2)+(2/2²)+(3/2³)+……+(n/2^n)

    2bn=1+(2/2)+(3/2²)……+[n/2^(n-1)]

    bn-2bn=-1-(1/2)-(1/2²)-……-[1/2^(n-1)]+(n/2^n)

    -bn=-2+[(n+2)/2^n]

    bn=2-[(n+2)/2^n]

    于是sn=[n(n+1)/2]+bn

    =[n(n+1)/2]+2-[(n+2)/2^n]