a(n+1)=2an/(1+an)【取倒数】
1/a(n+1)=(1+an)/2an
2/a(n+1)=(1/an)+1
[2/a(n+1)]-2=(1/an)-1
于是[1/a(n+1)]-1=(1/2)[(1/an)-1]
(1/a1)-1=1/2
数列{(1/an)-1}是以1/2为首项,1/2为公比得等比数列
(1/an)-1=(1/2)^n
(2)
1/an=1+(1/2)^n
n/an=n+(n/2^n)
sn=1/a1+2/a2+……+n/an
=1+(1/2)+2+(2/2²)+……+n+(n/2^n)
=(1+2+……+n)+[(1/2)+(2/2²)+(3/2³)……+(n/2^n)]
=[n(n+1)/2]+[(1/2)+(2/2²)+(3/2³)……+(n/2^n)]
令bn=(1/2)+(2/2²)+(3/2³)+……+(n/2^n)
2bn=1+(2/2)+(3/2²)……+[n/2^(n-1)]
bn-2bn=-1-(1/2)-(1/2²)-……-[1/2^(n-1)]+(n/2^n)
-bn=-2+[(n+2)/2^n]
bn=2-[(n+2)/2^n]
于是sn=[n(n+1)/2]+bn
=[n(n+1)/2]+2-[(n+2)/2^n]