解题思路:(I)求出f(x)的导函数在x=1处的值,利用函数在切点处的导数值为切线的斜率,列出方程求出a的值,将a的值代入f(x)的解析式,求出其导函数.
(II)列出x、f′(x)/f(x)的变化情况表,求出f(x)的极大值、极小值,求出k的范围.
(I)f'(1)=1⇒a=2⇒f(x)=-x3+2x2-4⇒f'(x)=-3x2+4x(3分)
因s,t互相独立,故只要分别求f'(s),f(t),s,t∈[-1,1]的最小值即可
当s=-1,t=0时,f'(s)+f(t)的最小值为-11
(II)等价于讨论f(x)=k的实根的个数
x (-∞,0) 0 (0,
4
3) [4/3] (
4
3,+∞)
f'(x) - 0 + 0 -
f(x) ↘ -4 ↗ −
76
27 ↘∴k>−
76
27或k<−4,一解;k=−
76
27或k=−4,二解;−4<k<−
76
27,三解.
点评:
本题考点: 利用导数求闭区间上函数的最值;函数的零点;直线的倾斜角.
考点点评: 本题1考查函数在切点处的导数值为切线的斜率;解决已知方程的解的个数求参数的范围问题常转化为求函数的极值问题.