f(1)=1得a+b=1;
f(x)=2x得x[2ax+(2b-1)]=0,x1=0或x2=-(2b-1)/2a有唯一解得
x1=x2,即-(2b-1)/2a=0,得b=1/2,则a=1/2;
故f(x)=2x/(x+1)
a1=f(2)=4/3;
an=2a(n-1)/[a(n-1)+1],故an*[a(n-1)+1]=2a(n-1),化简an*a(n-1)+an-2a(n-1)=0,
两边同除以an*a(n-1),得到1+1/a(n-1)-2/an=0,即2[(1/an)-1]=[1/a(n-1)]-1(终于找到了等比关系!)
于是(1/an)-1=(-1/4)*(1/2)^(n-1)
an=[1+(-1/4)*(1/2)^(n-1)]^(-1)