若tanA、tanB是方程x^2-2(log8 72 + log9 72)x-log8 72·log9 72=0的两个根

1个回答

  • tanA+tanB=2(log8 72 + log9 72)

    =2(log8 9+log8 8 + log9 8+log9 9)

    =2[(2/3)log2 3 +(3/2)log3 2 +2]

    所以(sinAcosB+cosAsinB)/cosAcosB=sin(A+B)/cosAcosB

    =2[(2/3)log2 3 +(3/2)log3 2 +2]------------①

    tanAtanB=-log8 72·log9 72

    =-[(2/3)log2 3+1][(3/2)log3 2+1]

    =-[(2/3)log2 3 +(3/2)log3 2 +2]

    所以sinAsinB/cosAcosB

    =-[(2/3)log2 3 +(3/2)log3 2 +2]---------②

    由①式和②式得(sinAcosB+cosAsinB)/cosAcosB=-2sinAsinB/cosAcosB

    所以sinAcosB+cosAsinB+2sinAsinB=0