c·cosB=b·cosC
b·cosC-c·cosB=0
由正弦定理得sinBcosC-cosCsinB=0
sin(B-C)=0
B、C为三角形内角,B=C
cosA=-cos(B+C)=-cos(2B)=-(1-2sin²B)=2sin²B-1
sin²B=(1+cosA)/2
cosA=2/3代入,sin²B=(1+2/3)/2=5/6
B为三角形内角,sinB>0
sinB=√(5/6)=√30/6
c·cosB=b·cosC
b·cosC-c·cosB=0
由正弦定理得sinBcosC-cosCsinB=0
sin(B-C)=0
B、C为三角形内角,B=C
cosA=-cos(B+C)=-cos(2B)=-(1-2sin²B)=2sin²B-1
sin²B=(1+cosA)/2
cosA=2/3代入,sin²B=(1+2/3)/2=5/6
B为三角形内角,sinB>0
sinB=√(5/6)=√30/6