∫f(x)dx的dx是什么意思 若是∫f(x)dcosx 呢 怎么求

3个回答

  • f(x)就是原函数F(x)的导数,f(x)dx就是原函数F(x)的微分,因为d[F(x)] = F'(x)dx =f(x)dx.f(x)dx前面加上积分号∫就是微分的逆运算,即已知导函数f(x),求原函数F(x)的运算,不定积分.如果是∫f(x)d(cosx),那么证明原函数的变量不是x,而是cosx而已.求解时要保持f(x)中的x与d后面的x相一致.所以要把x换成cosx,并且保持等价:∫f(x)d(cosx) = ∫f(x)·(-sinx)dx.