抛物线焦点是p/2=c,则:p=2c,则抛物线准线是x=-c,则两曲线交点是(c,2c),这个点在双曲线上,得:
c²/a²-(4c²)/(b²)=1
(c²/a²)-1=(4c²)/(b²)
b²/a²=4c²/b²
b²=2ac
c²-2ac-a²=0
(c/a)²-2(c/a)-1=0
e=c/a=1+√2
抛物线焦点是p/2=c,则:p=2c,则抛物线准线是x=-c,则两曲线交点是(c,2c),这个点在双曲线上,得:
c²/a²-(4c²)/(b²)=1
(c²/a²)-1=(4c²)/(b²)
b²/a²=4c²/b²
b²=2ac
c²-2ac-a²=0
(c/a)²-2(c/a)-1=0
e=c/a=1+√2