证 因
∈(A∩B)x(C∩D)
a∈A∩B ∧ c∈C∩D
a∈A ∧ a∈B ∧ c∈C∧ c∈D
∈A×C ∧ ∈B×D
∈(AxC)∩(BxD),
故得
(A∩B)x(C∩D)=(AxC)∩(BxD)