分子分母都趋于0,用洛必达法则,同时求导得到,
原极限
=lim(x->0) 2x *f(x²) / sinx
=lim(x->0) 2x/sinx *f(x²)
显然x趋于0时,
x/sinx趋于1,而f(x²)=f(0)趋于1
所以
原极限=2 *1=2
分子分母都趋于0,用洛必达法则,同时求导得到,
原极限
=lim(x->0) 2x *f(x²) / sinx
=lim(x->0) 2x/sinx *f(x²)
显然x趋于0时,
x/sinx趋于1,而f(x²)=f(0)趋于1
所以
原极限=2 *1=2