y'=(sinx·cosx)'=(sinx)'cosx+sinx(cosx)'=cos²x-sin²x=cos2x
y'=[cos(2-4x)]'=[cos(4x-2)]'=-4sin(4x-2)
y'=(3e^x+5x^2-x+1)'=3e^x+10x-1
y'=[(1nx)/x]=[(lnx)'x-x'(lnx)]/ln²x=(1-lnx)/ln²x
y'=(sinx·cosx)'=(sinx)'cosx+sinx(cosx)'=cos²x-sin²x=cos2x
y'=[cos(2-4x)]'=[cos(4x-2)]'=-4sin(4x-2)
y'=(3e^x+5x^2-x+1)'=3e^x+10x-1
y'=[(1nx)/x]=[(lnx)'x-x'(lnx)]/ln²x=(1-lnx)/ln²x