(x-1)(x^2-x+1)>0
由于x^2-x+1=x^2-x+1/4+3/4=(x-1/2)^2+3/4,可知(x-1/2)^2≥0,则x^2-x+1=(x-1/2)^2+3/4>0,所以
(x-1)>0
解得:x>1.
由于x^2-x+1=x^2-x+1/4+3/4=(x-1/2)^2+3/4>0,
不论x取任意数,x^2-x+1永远都大于0,所以不必解这个不等式.
(x-1)(x^2-x+1)>0
由于x^2-x+1=x^2-x+1/4+3/4=(x-1/2)^2+3/4,可知(x-1/2)^2≥0,则x^2-x+1=(x-1/2)^2+3/4>0,所以
(x-1)>0
解得:x>1.
由于x^2-x+1=x^2-x+1/4+3/4=(x-1/2)^2+3/4>0,
不论x取任意数,x^2-x+1永远都大于0,所以不必解这个不等式.