∵在三角形ABC中,
∴A+B+C=180°,得sinA=sin(B+C)
则A/2=90°-(B+C)/2,得cos﹙A/2﹚=sin((B+C)/2)
左边=sin(B+C)+sinB+sinC
则4cos(A/2)cos(B/2)cos(C/2)
=4sin[(B+C)/2]Cos(B/2)Cos(C/2)
=4cos(B/2)cos(C/2)[sinB/2·cos﹙C/2﹚+cosB/2·sin﹙C/2)]
=[4sin(B/2)cos(B/2)(cos²(C/2)]+[4sin(C/2)cos(C/2)(cos²(B/2)
=sinB(cosC+1)+sinC(CosB+1)
=sin(B+C)+sinB+sinC
左边=右边
原式成立