椭圆ax^2+by^2=1与直线y=1-x交与A,B两点,过原点与线段AB中点的直线斜率为二分之根号3,则a/b的值为多

1个回答

  • 设两点分别为(x1,y1),(x2,y2)

    分别代入椭圆方程得:

    ax1^2+by1^2=1

    ax2^2+by2^2=1

    两式相减,得:

    a(x1^2-x2^2)+b(y1^2-y2^2)=0

    展开得:

    a(x1+x2)(x1-x2)+b(y1+y2)(y1-y2)=0

    移项,整理得:

    (y1-y2)/(x1-x2)= - (a/b)*(x1+x2)/(y1+y2)

    (y1-y2)/(x1-x2)即直线y=1-x的斜率-1

    (x1+x2)/(y1+y2)=[1/2(x1+x2)-0]/[1/2(y1+y2)-0],即原点到线段中点的直线斜率的倒数,即2/√3

    代入得:-1=-(a/b)*2/√3

    得a/b=√3/2