设两点分别为(x1,y1),(x2,y2)
分别代入椭圆方程得:
ax1^2+by1^2=1
ax2^2+by2^2=1
两式相减,得:
a(x1^2-x2^2)+b(y1^2-y2^2)=0
展开得:
a(x1+x2)(x1-x2)+b(y1+y2)(y1-y2)=0
移项,整理得:
(y1-y2)/(x1-x2)= - (a/b)*(x1+x2)/(y1+y2)
(y1-y2)/(x1-x2)即直线y=1-x的斜率-1
(x1+x2)/(y1+y2)=[1/2(x1+x2)-0]/[1/2(y1+y2)-0],即原点到线段中点的直线斜率的倒数,即2/√3
代入得:-1=-(a/b)*2/√3
得a/b=√3/2