过A作AE⊥A1B1交A1B1于E、作AF⊥A1D1交A1D1于F,
再作AO⊥平面A1B1C1D1交平面A1B1C1D1于O,连结EO、FO.
∵AA1=AA1、∠AA1E=AA1F=60°、∠AEA1=∠AFA1=90°,∴AE=AF.
∵O是A在平面A1B1C1D1上的射影,
∴EO、FO分别是AE、AF在平面A1B1C1D1上的射影,而AE=AF,∴EO=FO.
∵AE⊥A1E、AF⊥A1F,EO、FO分别是AE、AF在平面A1B1C1D1上的射影,
∴由三垂线定理的逆定理,有:EO⊥A1E、FO⊥A1F,又EO=FO,
∴O在∠B1A1D1的平分线上.
∵∠AA1E=60°、∠AEA1=90°、AA1=b,∴A1E=b/2、AE=√3b/2.
∵A1B1C1D1是正方形,A1O平分∠B1A1D1,∴∠OA1E=45°.
∵∠OA1E=45°、∠A1EO=90°,∴EO=A1E=b/2.
∴AO=√(AE^2-EO^2)=√[(3/4)b^2-(1/4)b^2]=(√2/2)b.
∵A1B1C1D1是边长为a为正方形,∴S(A1B1C1D1)=a^2.
∴V(ABCD-A1B1C1D1)=S(A1B1C1D1)×AO=a^2×(√2/2)b=(√2/2)a^2b.