lim(2x^3+3x^2+5)/(7x^3+4x^2-1)
1个回答
上下除以x^3
原式=lim(2+3/x+5/x^3)/(7+4/x-1/x^3)
=(2+0+0)/(7+0-1)
=2/7
相关问题
lim(x→∞)(3x^3-4x^2+2)/(7x^3+5x^2-3)=
lim4x^3-2x 5除以x^3 3x^2-7等于
计算lim(3x^3+2x^2+x+1)除以(8x^3-7x^2-x+5)
求极限 lim(x趋于正无穷) (3x^3+2x^2-4x+1)/(2x^3-4x^2+3x-7)
lim(x→∞)(4x^3+2x-1)/(2x^3-3x+1)
lim(x^3+4x^2+1)/(3x^2+2x^)=
(4.5-x)*7=17.5 x/2+4=3/2x+1 7/2*2/3-4x=7/3 5/8(x-.3)=75% 1+x
1.lim(x->4)(2x+1)^1/2-3/x^2-3x-4
用线性代数解x1+3x2+5x3+7x4 =12,3x1+5x2+7x3+x4=0,5x1+7x2+x3+3x4=1,7
求 lim(x→无限) 4x^3-1/5x^3-2x+5