利用逐项求导或逐项微分求级数:求和符号,上面是无穷符号,下面是n=1,右边是(x^4n+1)\4n+1

1个回答

  • ∑x^(4n+1) / (4n+1) 的每一项设为 Un(x) = x^(4n+1) / (4n+1),则满足:

    (1).Un(x) 在任意给定的闭区间 [a,b] ∝ (-1,1) 上有连续的导函数Un ' (x) = x^(4n);

    (2).∑Un ' (x) = ∑x^(4n) = x^5 / (1 - x^4),在 [a,b] 上,∑Un ' (x) 一致收敛于 x^5 / (1 - x^4);

    (3).∑x^(4n+1) / (4n+1) 在任意给定的点 r ∈ (-1,1) 上收敛;

    则有级数 ∑x^(4n+1) / (4n+1) 在 [a,b] 上一致收敛,不妨设收敛到 S(x),且有:

    ( ∑x^(4n+1) / (4n+1) ) ' = S ' (x) = ∑( x^(4n+1) / (4n+1) ) ' = ∑x^(4n) = x^5 / (1 - x^4).

    两边同时积分就得到:S(x) = 1/4 * ln[(1+x^2) / (1-x^2)] - x^2 / 2.

    注:一定要先证明求导与求和符号可交换才能计算,即证明级数一致收敛.