(1)证明:如图,连接AD、OD,
∵AB是⊙O的直径,∴∠ADB=90°。
∵AB=AC,∴AD垂直平分BC,即DC=DB。
∴OD为△BAC的中位线。∴OD∥AC。
又∵DE⊥AC,∴OD⊥DE。
∴DE是⊙O的切线。
(2)∵OD⊥DE,DE⊥AC,∴四边形OAED为矩形。
∵OD=OA,∴四边形OAED为正方形。
∴AE=AO。∴
。
(3)∵AB是⊙O的直径,∴∠AFB=90°。∴∠ABF+∠FAB=90°。
∵∠EAP+∠FAB=90°,∴∠EAP=∠ABF。∴tan∠EAP=tan∠ABE=
。
在Rt△EAP中,AE=2,
∵
,∴EP=1。
∴
。
<>