解题思路:等腰三角形一腰上的中线将它的周长分为12和9两部分,但已知没有明确等腰三角形被中线分成的两部分的长,哪个是12,哪个是9,因此,有两种情况,需要分类讨论.
根据题意画出图形,如图所示,
设等腰三角形的腰长AB=AC=2x,BC=y,
∵BD是腰上的中线,
∴AD=DC=x,
①若AB+AD的长为12,则2x+x=12,
解得x=4,
则x+y=9,即4+y=9,
解得y=5;
②若AB+AD的长为9,则2x+x=9,
解得x=3,
则x+y=12,即3+y=12,
解得y=9;
所以等腰三角形的底边为5时,腰长为8;
等腰三角形的底边为9时,腰长为6;
故答案为:8或6;5或9
点评:
本题考点: 等腰三角形的性质
考点点评: 本题考查了等腰三角形的性质;由于等腰所具有的特殊性质,因此要进行分类讨论,要考虑全面各种情况的存在,不要漏解.