[1] x^2+y^2=(x+y)^2-2xy=28
[2] x^4+y^4=(x^2+y^2)^2-2(x^2)(y^2)=784-32=752
3.xy=[(x+y)^2-(x-y)^2]/4=-4
4.证明:因为x+y=1
所以y=1-x
所以x^3+y^3-xy
=x^3+(1-x)^3-x(1-x)
=4x^2-4x+1
=(2x-1)^2>=0
syx^3+y^3-xy的值是非负数
[1] x^2+y^2=(x+y)^2-2xy=28
[2] x^4+y^4=(x^2+y^2)^2-2(x^2)(y^2)=784-32=752
3.xy=[(x+y)^2-(x-y)^2]/4=-4
4.证明:因为x+y=1
所以y=1-x
所以x^3+y^3-xy
=x^3+(1-x)^3-x(1-x)
=4x^2-4x+1
=(2x-1)^2>=0
syx^3+y^3-xy的值是非负数