an-a(n-1)=2n-1
.
a3-a2=2*3-1
a2-a1=2*2-1
以上等式相加得
an-a1=2*2-1+2*3-1+.+2n-1
an-1=2*(2+3+.+n)-(n-1)
an-1=2*(n-1)(n+2)/2-n+1
an=n^2+n-2-n+2
an=n^2
b1=[(-1)^1]*a1
=-a1
=-1
b1=[(-1)^n]*an
=(-1)^n*n^2
n为偶数时
Sn=-1^2+2^2+.+n^2
=(2-1)(2+1)+.+(n+n-1)(n-n+1)
=1+2-.+n-1+n
=n(n+1)/2
n为奇数时
Sn=-1^2+2^2+.-n^2
=(2-1)(2+1)+.+(n-1+n-2)(n-1+n-2)-n^2
=n(n-1)/2-n^2
=-n(n+1)/2