令F(x)=e^(-x)积分(从0到x)f(t)dt,F‘(x)=e^(-x)(f(x)-积分(从0到x)f(t)dt),F(0)=F(1)=0,Rolle中值定理得结论.
设f(x)在[0,1]上连续,∫(下0,上1)f(x)dx=0,证明在(0,1)内,至少存在一点ξ 使得∫(0到ξ)f(
1个回答
相关问题
-
设f(x)在[0,1]上连续,证明在(0,1)内至少存在一点ξ,使∫f(x)dx=(1-ξ)f(ξ)
-
设f(x)在[0,x]上连续,在(0,x)内可导,且f(0)=0,证明:存在ξ∈(0,x),使得f(x)=(1+ξ)f’
-
设函数f(x)在[0,1]上连续,且f(1)=0,f(0)=1,求证:存在一点ξ∈[0,1]使得f`(ξ)=-f(ξ)/
-
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明存在ξ∈(0,1),使得f(ξ)=1
-
设函数f(x)在闭区间[0,1]上连续,且f(0)=1,f(1)=0,求证:存在一点ξ属于(0.1),使得f(ξ)=ξ
-
设函数f(x)在[0,2a]上连续,且f(0)=f(2a),试证明在[0,a]上至少存在一点ξ,使得f(ξ)=f(ξ+a
-
设函数f(x)在[0,1]上连续且不恒为零,在(0,1)内可导,且f(0)=0,证明:存在ξ∈(0,1),使得f(ξ)f
-
设f(x)在[0a]上连续,在(0a)内可导,且f'(a)=0,证明存在一点ξ满足f(ξ)+ξ f'(ξ)=0
-
设函数f(x)在[0,1]上可导,且满足f(1)=0,求证:在(0,1)内至少存在一点ξ,使f′(ξ)=-f(ξ)ξ.(
-
大一高数题:设f(x)在闭区间[0,1]上连续,f(0)=0,f(1)=1,证明:存在ξ∈(0,1),使得f(ξ-1/3