分析:1/(1x3)=1/2·(1-1/3);
1/(2x4)=1/2·(1/2-1/4);
1/(3x5)=1/2·(1/3-1/5);
1/(4x6)=1/2·(1/4-1/6);
······
1/(2012x2014)=1/2·(1/2012 -1/2014)
原式=1/(1x3)+1/(3x5)+1/(5x7)+···+1/(2011x2013)
+1/(2x4)+1/(4x6)+1/(6x8)+···+1/(2012x2014)
=1/2·(1-1/3+1/3-1/5+1/5+1/7+···+1/2011-1/2013)
+1/2(1-1/2+1/2-1/4+1/4-1/6+···+1/2012 -1/2014)
=1/2·(1-1/2013)+1/2·(1-1/2014)
=1/2·2012/2013+1/2·2013/2014
=1006/2013 +2013/4028