利用正弦定理
a/sinA=c/sinC=b/sinB=√3/(√3/2)=2
a=2sinA,c=2sinC=2sin(60°-A)
a+c
=2sinA+2sin(60°-A)
=2sinA+2sin60°cosA-2cos60°sinA
=sinA+√3cosA
=2[sinA*(1/2)+cosA*(√3/2)]
=2(sinAcos60°+cosAsin60°)
=2sin(A+60°)
当A=30°时,a+c有最大值2
利用正弦定理
a/sinA=c/sinC=b/sinB=√3/(√3/2)=2
a=2sinA,c=2sinC=2sin(60°-A)
a+c
=2sinA+2sin(60°-A)
=2sinA+2sin60°cosA-2cos60°sinA
=sinA+√3cosA
=2[sinA*(1/2)+cosA*(√3/2)]
=2(sinAcos60°+cosAsin60°)
=2sin(A+60°)
当A=30°时,a+c有最大值2