解题思路:根据a与b的最大公约数是4,可以得出a,b可能的数,再根据a与c、b与c的最小公倍数都是100,得出c的取值的范围,由乘法原理解答即可.
根据题意可得,a、b中有一个为4,另一个为4、20或100,故有3种可能:①a=4,b=4,②a=4,b=20;③a=4,b=100;对于a、b的这3组取值,c可取25,50,100;
因此,满足以上条件的自然数a、b、c有:3×3=9(组).
答:满足条件的自然数a、b、c共有9组.
点评:
本题考点: 数的整除特征.
考点点评: 根据a与b的关系确定a,b可能的数,再根据a与c,b与c的关系求出c可能的数,再根据乘法原理解答即可.