怎样将角三等分啊?我发现了一尺规作图方法,用了等分圆弧的方法.

1个回答

  • 如一楼所说,是任意角,楼主的等分圆弧的方法大概不是任意角,而是360度之类的特殊角,1837年凡齐尔运用代数方法证明了,这是一个标尺作图的不可能问题.

    当然如果突破标尺作图限制,还是有方法的

    三等分角问题(trisection of an angle)是二千四百年前,古希腊人提出的几何三大作图问题之一,即 用圆规与直尺把一任意角三等分.问题的难处在于作图使用工具的限制.古希腊人要求几何作图只许使用直尺 (没有刻度,只能作直线的尺)和圆规.这问题曾吸引着许多人去研究,但都无一成功.1837年凡齐尔( 1814-1848)运用代数方法证明了,这是一个标尺作图的不可能问题.

    在研究「三等分角」的过程中发现了如蚌线、心脏线、圆锥曲线等特殊曲线.人们还发现,只要放弃「尺 规作图」的戒律,三等分角并不是一个很难的问题.古希腊数学家阿基米得(前287-前212)发现只要 在直尺上固定一点,问题就可解决了.现简介其法如下:在直尺边缘上添加一点P,命尺端为O.设所要三等分的角是∠ACB,以C为圆心,OP为半径作半圆交角边于A,B;使O点在CA延在线移 动,P点在圆周上移动,当尺通过B时,连OPB(见图).由于OP=PC=CB,所以∠COB=∠AC B/3.这里使用的工具已不限于标尺,而且作图方法也与公设不合.

    另有一机械作图的方法可以三等分角,简介如下:

    如右图:ABCD为一正方形,设AB均匀向CD平行移动,AD以D为中心依顺时针方向转到DC,若AB抵达DC时DA也恰好抵达DC,则他们交点的轨迹AO即曲线称为三分线.

    令A是AC弧上的任一点,我们要三等分 ADC,设DA与三分线AO交于R,过R作AB之并行线交AD、BC于A、B,令T、U是AD之三等分点,过T、U作AB之并行线交三分线AO于V、W,则DV、DW必将 ADC三等分.

    www2.emath.pu.edu.tw/s8805106/hippias-all.htm

    参考资料:www2.emath.pu.edu.tw/s8805106/hippias-all.htm