已知等差数列{an}中,a1=1,a3=-3.

2个回答

  • 解题思路:(I)设出等差数列的公差为d,然后根据首项为1和第3项等于-3,利用等差数列的通项公式即可得到关于d的方程,求出方程的解即可得到公差d的值,根据首项和公差写出数列的通项公式即可;

    (II)根据等差数列的通项公式,由首项和公差表示出等差数列的前k项和的公式,当其等于-35得到关于k的方程,求出方程的解即可得到k的值,根据k为正整数得到满足题意的k的值.

    (I)设等差数列{an}的公差为d,则an=a1+(n-1)d

    由a1=1,a3=-3,可得1+2d=-3,解得d=-2,

    从而,an=1+(n-1)×(-2)=3-2n;

    (II)由(I)可知an=3-2n,

    所以Sn=

    n[1+(3−2n)]

    2=2n-n2

    进而由Sk=-35,可得2k-k2=-35,

    即k2-2k-35=0,解得k=7或k=-5,

    又k∈N+,故k=7为所求.

    点评:

    本题考点: 等差数列的通项公式;等差数列的前n项和.

    考点点评: 此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.