解题思路:利用复数的除法运算把复数z化简为a+bi(a,b∈R)的形式,则复数z所对应的点位于复平面的象限可求.
由z=[3−2i/i]=
(3−2i)(−i)
−i2=−2−3i.
所以复数z所对应的点Z(-2,-3).
则复数z所对应的点位于复平面的第三象限.
故答案为三.
点评:
本题考点: 复数代数形式的乘除运算.
考点点评: 本题考查了复数代数形式的乘除运算,考查了复数的几何意义,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.
解题思路:利用复数的除法运算把复数z化简为a+bi(a,b∈R)的形式,则复数z所对应的点位于复平面的象限可求.
由z=[3−2i/i]=
(3−2i)(−i)
−i2=−2−3i.
所以复数z所对应的点Z(-2,-3).
则复数z所对应的点位于复平面的第三象限.
故答案为三.
点评:
本题考点: 复数代数形式的乘除运算.
考点点评: 本题考查了复数代数形式的乘除运算,考查了复数的几何意义,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.