f(x)=(2x^3-x^2+5)/(x^2-2x+5)有无垂直渐近线?

2个回答

  • ∵a=lim(x->∞)[f(x)/x]

    =lim(x->∞)[(2x³-x²+5)/(x(x²-2x+5))]

    =lim(x->∞)[(2-1/x+5/x³)/(1-2/x+5/x²)]

    =(2-0+0)/(1-0+0)

    =2

    b=lim(x->∞)[f(x)-ax]

    =lim(x->∞)[(2x³-x²+5)/(x²-2x+5)-2x]

    =lim(x->∞)[(3x²-10x+5)/(x²-2x+5)]

    =lim(x->∞)[(3-10/x+5/x²)/(1-2/x+5/x²)]

    =(3-0+0)/(1-0+0)

    =3

    ∴y=2x+3(y=ax+b)是原函数的渐近线

    ∵lim(x->c+)f(x)≠∞,lim(x->c-)f(x)≠∞

    ∴没有垂直渐近线

    故原函数只有唯一的一条渐近线y=2x+3.