若5阶方阵A的伴随矩阵A*,且|A|=2,则|A*|=
1个回答
AA*=|A|E
两边取行列式:
|A||A*|=|A|^n
所以|A*|=|A|^n/|A|=|A|^n-1=2^4=16.
相关问题
若A为3阶方阵,A*为A的伴随矩阵,则(2A)*=?
证明:若n阶方阵A的伴随矩阵A*可逆,则A可逆
证明:若n阶方阵A的伴随矩阵A*可逆,则A可逆
设A*是三阶方阵A的伴随矩阵,若|A|=2,则秩R(A*)=?
设 为四阶方阵A的伴随矩阵,且|A*| =8,则|2(A^2)^-1|
设A*为n阶方阵A的伴随矩阵,则||A*|A|=
已知A是4阶可逆方阵,且|A|=-2,则其伴随矩阵的行列式|A*|=?
设A*是n阶方阵A的伴随矩阵,若R(A*)=n,则R(A)=?
若三阶方阵A的伴随矩阵是A^*,已知|A|=1/2
已知A*为三阶方阵A的伴随矩阵,且|A|=2,求(2A)*