拆成等差和等比:
设An前n项和为Sn
Sn=a1+a2+a3+...+an
=2*1+1+2*2+3+2*3+5+...+2*n+2n-1
=(2*1+2*2+2*3+...+2*n)+(1+3+5+...+2n-1)
=2(1-2*n)/(1-2) + [ (1+2n-1)X n] /2
=2*(n+1) +n*2 -2 (2的n+1次方加n平方减2 )
这么辛苦,!
拆成等差和等比:
设An前n项和为Sn
Sn=a1+a2+a3+...+an
=2*1+1+2*2+3+2*3+5+...+2*n+2n-1
=(2*1+2*2+2*3+...+2*n)+(1+3+5+...+2n-1)
=2(1-2*n)/(1-2) + [ (1+2n-1)X n] /2
=2*(n+1) +n*2 -2 (2的n+1次方加n平方减2 )
这么辛苦,!