有一个公式,你可以记住:
{1,2,N}中,子集个数为2^n,非空子集个数为2^n -1个,同一个元素在所有子集中出现的次数为2^(n-1)次
所以所有子集的元素之和是:
1*2^(n-1)+2*2^(n-1)+...n*2^(n-1)
=(1+2+3+...n)*2^(n-1)
=(1+n)n/2 *2^(n-1)
有一个公式,你可以记住:
{1,2,N}中,子集个数为2^n,非空子集个数为2^n -1个,同一个元素在所有子集中出现的次数为2^(n-1)次
所以所有子集的元素之和是:
1*2^(n-1)+2*2^(n-1)+...n*2^(n-1)
=(1+2+3+...n)*2^(n-1)
=(1+n)n/2 *2^(n-1)