1/1*4+1/4*7+1/7*10+.+1/(3n-2)(3n+1)
=1/3*[3/1*4+3/4*7+3/7*10+.+3/(3n-2)(3n+1)]
=1/2*[1-1/4+1/4-1/7+1/7-1/10+..+1/(3n-2)-1/(3n+1)】
=1/3*[1-1/(3n-1)]
=1/3*(3n-2)/(3n-1)
=(3n-2)/3(3n-1)
用的公式为:m/n(n+m)=1/n-1/(n+m)
1/1*4+1/4*7+1/7*10+.+1/(3n-2)(3n+1)
=1/3*[3/1*4+3/4*7+3/7*10+.+3/(3n-2)(3n+1)]
=1/2*[1-1/4+1/4-1/7+1/7-1/10+..+1/(3n-2)-1/(3n+1)】
=1/3*[1-1/(3n-1)]
=1/3*(3n-2)/(3n-1)
=(3n-2)/3(3n-1)
用的公式为:m/n(n+m)=1/n-1/(n+m)