连结OD,
∵OB=OD,
∴则△OBD是等腰△,
∴〈OBD=〈ODB,
∵〈CBD=〈ADC,(已知),
∴〈CDA+〈BDO,
∵AB是直径,
∴〈BDA=90°,(半圆上的圆周角是直角),
∴〈BDO+〈ODA=90°,
∴〈DAC+〈ODA=90°,
∴〈ODC=90°,
∴OD⊥CD,
∴CD是⊙O的切线.
2、∵BE是⊙O的切线,BA是直径,
∴〈EBC=90°,
作DH⊥BC,垂足H,
则〈ADH=〈DBA,
∴〈ADH=〈CDA,
〈CDH=2〈ADC,
利用正切的倍角公式,
tan