1.D
2.设S=2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9 .(1)
(1)*2,得
2S=2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10 .(2)
(2)-(1),得
2S-S=2^10 -2^2
S=2^10 -2^2
故
2-2^2-2^3-2^4-2^5-2^6-2^7-2^8-2^9+2^10
=2+2^10-(2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9)
=2+2^10-(2^10 -2^2)
=2+2^10-2^10 +2^2
=6
3.a=2001×(2002+2002²+.+ 2002^2001)=2001 ×(1-2002*2002)/1-2002-1=2001×(-(2002*2002-1))/-2002=(2002-1)×(2002*2001-1)=2002*2002
b=2002*2002
所以a=