解题思路:(1)在BC上截取BE=BA,连接DE,证△ABD≌△EBD,推出AD=DE=CE,∠A=∠DEB,证出∠A=2∠C,因为∠C=∠B,根据三角形内角和定理求出即可;
(2)在BC上截取CF=CD,连接DF,证△ABD≌△FBD,推出∠A=∠DFB,推出2∠A-∠C=180°,根据三角形内角和定理得到∠A+2∠C=180°,解方程组即可求出答案;
(3)BC上截取BQ=BD,连接DQ,延长BA到W使BW=BQ,连接DW,求出CQ=DQ,证△WBD≌△CBD,推出∠W=∠DQB,证AD=DW,即可推出答案.
(1)答:∠A=90°.理由如下:
在BC上截取BE=BA,连接DE.
∵BC=AB+AD,
∴CE=AD,
∵BD是△ABC的角平分线,
∴∠ABD=∠EBD,
∵AB=BE,BD=BD,
∴△ABD≌△EBD,
∴AD=DE=CE,∠A=∠DEB,
∴∠C=∠EDC,
∴∠A=∠DEB=∠C+∠EDC=2∠C,
∵AB=AC,
∴∠C=∠B,
∵∠A+∠ABC+∠C=180°,
∴4∠C=180°,
∴∠C=45°,∠A=2∠C=90°,
即∠A=90°;
(2)在BC上截取CF=CD,连接DF.
∵BC=BA+CD,
∴BF=BA,
∵∠ABD=∠FBD,BD=BD,
∴△ABD≌△FBD,
∴∠A=∠DFB,
∵CD=CF,
∴∠CDF=∠CFD,
∴∠C+2∠DFC=180°,
∵∠A+∠DFC=180°,
∴2∠A-∠C=180°,
∵∠A+2∠C=180°,
解得:∠A=108°,
答:∠A的度数是108°.
(3)证明:
在BC上截取BQ=BD,连接DQ,延长BA到W使BW=BQ,连接DW.
∵∠A=100°,AC=AB,
∴∠C=∠ABC=40°,
∵BD平分∠ABC,
∴∠DBQ=20°,
∵BD=BQ,
∴∠DQB=∠BDQ=[1/2](180°-∠DBQ)=80°,
∴∠CDQ=∠DQB-∠C=40°=∠C,
∴DQ=CQ,
∵在△WBD和△QBD中
BW=BQ
∠WBD=∠QBD
BD=BD,
∴△WBD≌△QBD,
∴∠W=∠DQB=80°,DW=DQ=CQ,
∵∠BAC=100°,
∴∠WAD=180°-100°=80°=∠W,
∴AD=DW=DQ=CQ,
∴BC=BD+DA.
点评:
本题考点: 角平分线的性质;三角形内角和定理;三角形的外角性质;全等三角形的判定与性质;等腰三角形的判定与性质.
考点点评: 本题主要考查对三角形的内角和定理,三角形的外角性质,等腰三角形的性质和判定,全等三角形的性质和判定,角平分线性质等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.