解题思路:(1)根据圆周角定理的推论得到∠BDA=90°,再根据等腰三角形的性质即可得到BD=CD;
(2)根据有两对角相等的两个三角形相似证明即可;
(3)由(2)中的三角形相似可得到关于AC的比例式,AC可求,进而求出AB的长.
(1)证明:∵AB为⊙O的直径,∴∠BDA=90°,∴AD⊥BC.∵AB=AC.∴BD=CD,∴D是BC的中点;(2)∵AB=AC,∴∠C=∠ABD,∵AB为⊙O的直径,∴∠ADB=∠BEC=90°,∴△BEC∽△ADC;(3)∵△BEC∽△ADC,∴CE:BD=BC:A...
点评:
本题考点: 相似三角形的判定与性质;等腰三角形的性质;圆周角定理.
考点点评: 本题考查了相似三角形的判定和性质以及圆周角定理的推论:直径所对的圆周角为直角.也考查了等腰三角形的性质.