f'(x)=3x^2+2ax+b,
f''(x)=6x+2a
f(x)=x^3+ax^2+bx+c在x=0处取得极值,
f'(0)=0
b=0
对应曲线有一拐点(1,-1),
f""(1)=0,f(1)=-1=1+a+b+c
6+2a=0,c=-2-a,
a=-3,c=1
f(x)=x^3-3x+1
f'(x)=3x^2-6x,f''(x)=6x-6
求它的增减性并求其极值
令f'(x)=0,
x=0或x=2
f''(0)=-60
f(0) 为极大值,f(2)为极小值,
在x
f'(x)=3x^2+2ax+b,
f''(x)=6x+2a
f(x)=x^3+ax^2+bx+c在x=0处取得极值,
f'(0)=0
b=0
对应曲线有一拐点(1,-1),
f""(1)=0,f(1)=-1=1+a+b+c
6+2a=0,c=-2-a,
a=-3,c=1
f(x)=x^3-3x+1
f'(x)=3x^2-6x,f''(x)=6x-6
求它的增减性并求其极值
令f'(x)=0,
x=0或x=2
f''(0)=-60
f(0) 为极大值,f(2)为极小值,
在x